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ABSTRACT 

The Supervisory Control and Data Acquisition (SCADA) system in wind turbines generates 
substantial data that remains underutilized in terms of wind farm operation and maintenance (O&M). 
Numerous fault detection methods leveraging SCADA data are being extensively researched to 
reduce O&M costs. The detection methods are revolutionizing wind farm O&M strategies, shifting 
from scheduled passive detection to predictive active detection, with the potential to significantly 
reduce spare parts and labor costs. This paper presents a systematic review of wind turbine fault 
detection methods based on concept drift and distance metrics, employing the PRISMA methodology. 
The selected literature is analyzed from three perspectives: fault components, modeling methods, 
and data sources. Additionally, this review addresses research questions related to current trends, 
concept drift applications, and distance metric utilization in wind turbine fault detection. Lastly, it 
provides valuable insights for researchers and industry practitioners in wind energy engineering to 
explore future research and development in fault detection techniques for enhancing the reliability 
and efficiency of wind turbine operations.
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INTRODUCTION

In 2022, China’s grid-connected wind power 
cumulative installed capacity surpassed 
300 million kilowatts, with over 155,000 
operational wind turbines. As these turbines 
age, a significant proportion will exceed 
the manufacturer’s warranty period. Wind 
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turbines beyond the typical 5-year warranty often cannot receive maintenance from the 
original manufacturer, necessitating third-party companies’ procurement of inspection 
and maintenance services. The five components with the highest fault rates in wind 
turbines are the pitch system, inverter, generator, control system, and electrical system. 
The main shaft, generator, gearbox, pitch, and hydraulic systems are responsible for 
the most extended downtimes. These downtimes render wind turbines inoperative and 
incur high maintenance costs, highlighting the urgent need for intelligent maintenance 
transformation in wind farms.

Wind farms are typically equipped with Supervisory Control and Data Acquisition 
(SCADA) systems, which monitor 30 to 150 parameters. This data is stored in the SCADA 
database in real-time. However, a substantial amount of valuable data remains underutilized 
due to the lack of effective analysis methods and tools for time series data in wind farms. 
Therefore, analyzing these data effectively for early fault detection in wind turbines is 
crucial. It is worth noting that while SCADA data encompasses both time-series data and 
status codes, this study focuses exclusively on the analysis of time-series data. Vibration 
data (Feng, Ji, Ni, et al., 2023; Ni et al., 2023), although crucial for monitoring wind turbine 
health, is not included in the scope of this research.

Normal data can be utilized to establish the basic performance of machines, where 
it serves as a benchmark or threshold, indicating the machine’s normal operational 
parameters. The monitoring process typically involves comparing newly acquired data 
against this established threshold. The primary objective is to detect any abnormal state of 
the machine, the phenomenon often referred to as concept drift. Concept drift occurs when 
the machine’s performance deviates significantly from the threshold, exceeding or falling 
below it. Such deviations are frequently indicative of system faults and warrant detection 
and investigation. In essence, wind turbine SCADA data is typical time series data in 
complex industrial systems. This data is characterized by its detailed, multi-dimensional 
nature, encompassing information from multiple devices and components. Through the 
application of concept drift and related algorithms, it is possible to monitor the operational 
state of wind turbine equipment. Consequently, this enables a shift in the assessment 
of wind turbine working conditions, transitioning from periodic passive inspections to 
condition-based active maintenance.

This study employs the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) method to identify and analyze 65 papers pertinent to wind turbine 
fault detection. The analysis begins with examining the basic characteristics of these 
publications, including literature type, publication date, and the first author’s country 
affiliation. Subsequently, a comprehensive investigation focuses on three key aspects: 
fault types, modeling methods, and data sources. Furthermore, the study addresses three 
critical questions: the state-of-the-art fault detection methods for wind turbines, the current 
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status of concept drift application in wind turbine fault detection, and the advantages of 
distance-based concept drift approaches. The paper concludes with a synthesis of current 
research findings and an outlook on future research directions.

RESEARCH QUESTIONS

This review aims to concisely overview the current wind turbine fault detection research. 
Recent literature has examined fault detection from various perspectives, including non-
destructive detection (Márquez & Chacón, 2020), tribology (Dhanola & Garg, 2020), 
machine learning (Fernandes et al., 2022), and condition monitoring (Badihi et al., 2022). 
However, a notable gap remains in synthesizing recent wind turbine fault detection 
methodologies advancements. This paper intends to address this gap and focus on three 
core research questions, summarized in Table 1.

Table 1 
Description of research question

No. Description Why this is important
Research 
question 1

What is the 
current trend in 
advanced fault 
detection methods 
for wind turbines?

In recent years, algorithmic research has experienced exponential growth, 
yielding diverse methodologies, including classification, prediction, 
regression, and supervised and unsupervised learning approaches. 
The central focus of this review is to examine how these burgeoning 
algorithmic advancements can be effectively synthesized and applied to 
shape the emerging research trends in wind turbine fault detection.

Research 
question 2

What is the 
current research 
status of concept 
drift methods in 
wind turbine fault 
detection?

The fundamental principle of concept drift algorithms lies in their ability 
to detect changes in data distribution. Despite this potential, there is a 
notable absence of comprehensive literature reviews examining the 
application of concept drift algorithms in wind turbine fault detection. 
This paper will address this gap by concentrating on concept drift-based 
wind turbine fault detection developments over the past years.

Research 
question 3

What are the 
advantages of 
distance metrics 
for wind turbine 
fault detection 
and concept drift?

Distance metrics are essential in wind turbine fault detection and concept 
drift algorithms. These metrics find diverse applications across various 
aspects of the analytical process, including data similarity measurement, 
fundamental distance functions within models, and evaluation indices. 
This paper will specifically examine the application of distance metric 
algorithms in concept drift-based wind turbine fault detection research, 
analyzing their advantages and contributions to this field.

METHOD

PRISMA Methodology

This systematic literature review follows the PRISMA methodology. PRISMA is a widely 
recognized approach to improving systematic reviews and meta-analyses’ transparency, 
completeness, and reliability. The method provides a structured framework for conducting 
and reporting literature reviews.



152 Pertanika J. Sci. & Technol. 33 (1): 149 - 177 (2025)

Dongqi Zhang, Zainura Idrus and Raseeda Hamzah

Search Strategy 

This study employs a systematic approach to conduct a comprehensive literature review 
on fault detection in wind turbines, specifically concept drift algorithms. The literature 
search is based on three primary keywords: “wind turbine,” “fault detection,” and “concept 
drift.” The search process is structured in three phases:

Initial Phase: Extensive search is conducted using the Web of Science database, 
provides broad, multidisciplinary coverage of scientific literature.

Secondary Phase: The search is expanded to include IEEE Xplore, a database 
specializing in information technology and engineering literature.

Final Phase: The literature search is investigated using ScienceDirect, which offers 
access to a wide range of scientific and technical publications to ensure comprehensive 
coverage.

Data Extraction and Analysis Plan

It is planned to extract the data and analysis methods of each literature, including the 
following aspects: research questions, research objectives, research methods, results, 
data sources, relevance to wind turbine fault detection, relevance to concept drift, 
and use of distance metrics. A keyword pairwise query method is employed to ensure 
a comprehensive literature analysis. This approach facilitates the examination of 
intersections between fault detection, concept drift, and distance metric applications in 
the context of wind turbine research.

Literature Screening

The literature search process involves a comprehensive keyword search across multiple 
databases, as illustrated in Figure 1. The search yielded the following results: 140 relevant 
publications were retrieved from the Web of Science, while IEEE Xplore and ScienceDirect 
yielded 1,383 and 2,404 relevant publications, respectively. After the initial search, a two-
step refinement process was applied, identifying and removing 556 duplicate entries across 
the databases. Additionally, 1,894 publications published before 2018 were excluded to 
focus on recent research.

Upon further scrutiny of the 1,477 publications, it was revealed that 835 publications 
primarily focused on vibration-related topics and their various aspects, including vibration 
analysis, data, experiments, datasets, monitoring, signals, signal analysis, noise, and 
spectrum and frequency band identification. While these topics are generally relevant 
to wind turbine research, they do not align directly with the specific focus of this study. 
Consequently, these 835 publications were excluded from further analysis. After this 
screening process, 642 publications remained for potential inclusion in the review.



153Pertanika J. Sci. & Technol. 33 (1): 149 - 177 (2025)

Concept Drift Early Fault Detection in Wind Turbine

The final screening process of the 642 potentially relevant publications involves several 
steps. First, 525 publications were deemed inaccessible. After their removal, 117 
publications remained. Subsequently, 40 publications categorized as specialized science 
were found irrelevant to this review, along with 12 publications focused on diagnostic 
topics. These 52 publications were excluded. Ultimately, 65 publications were deemed 
relevant for this review, comprising five review papers and 60 research papers.

Analysis of Basic Literature Information

After the screening process, a comprehensive analysis of the 65 selected publications related 
to wind turbine fault detection will be conducted. This analysis will focus on literature 
type, publication year, and the first author’s country, providing a clear overview of the 
research status in the field.

Figure 1. Identification of studies via databases and register

Records identified from
Web of Science (n = 140)
IEEE Xplore (n = 1383)
ScienceDirect (n = 2404)

Records screened
(n = 1477)

Records sought for retrieval
(n = 642)

Records assessed for eligibility 
(n = 117)

Records excluded vibrations, vibration 
analysis, vibration data, vibration experiment, 
vibration datasets, vibration monitoring, 
vibration signals, vibration signal analysis, 
vibration and noise, frequency spectrum, 
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Analysis of Literature Types

A total of 65 literature items were selected and divided into conference papers and journal 
papers. According to the statistics, there are 11 conference papers and 54 journal papers.

Figure 2. Statistics of different literature types

Analysis of Publication Dates

Figure 2 illustrates the annual distribution 
of conference and journal papers from 2018 
to the present. This visualization reveals 
several important trends and insights. 
The red bar chart representing conference 
papers exhibits an irregular pattern across 
the years, with no discernible trend. This 
irregularity can be attributed to conference 
papers, which are more sensitive to short-
term factors or specific events in the field. 
The right blue bars are the statistical results 
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of journal papers. The statistical number of journal papers shows an increasing trend, 
indicating that the scientific research resources invested in this field are increasing yearly.

Analysis of the First Author Country

Figure 3 illustrates first-author countries’ distribution for conference and journal papers. 
This visualization reveals several important trends and insights. China (CN) leads in both 
journal and conference papers. This aligns with China’s recent aggressive push for new 

Figure 3. Statistical number for country analysis of the first author

Number of conference paper

N
um

be
r o

f j
ou

rn
al

 p
ap

er

0          1          2          3          4          5

25

20

15

10

5

0

 Journal paper
 Conference paper
 Both

 

CN

ESUK

USA, IN, FR
PL, IT, AT, PT, SG, SE, DK, GR, TR, FI

AR, CA, BR, DE

30

1

Paper population



155Pertanika J. Sci. & Technol. 33 (1): 149 - 177 (2025)

Concept Drift Early Fault Detection in Wind Turbine

energy policies and investments in renewable energy research. It also reflects China’s 
growing wind energy sector and the need for advanced fault detection technologies. 
The United Kingdom (UK) and Spain (ES) show significant research activities. It can 
be attributed to their geographical conditions favorable for wind energy, long-standing 
traditions in wind power utilization and strong governmental support for renewable energy 
research. The United States (USA), India (IN), and France (FR) each contribute two journal 
articles. It indicates a broader global interest in wind turbine fault detection, albeit at a 
lower intensity compared to the leading countries.

RESULTS

Fault Analysis of Wind Turbine Components

Based on the analysis of the selected publications, it is evident that in post-2014, virtually 
all newly installed large wind turbines globally have adopted variable pitch, variable 
speed and constant frequency technology. These modern wind turbines can be broadly 
categorized into doubly fed asynchronous wind turbines and direct drive permanent magnet 
wind turbines. The primary distinction between these types is the presence or absence of 
a substantial transmission device—the gearbox. The research on wind turbine component 
fault detection primarily focuses on several key components: generators, transmission 
chains (including gearboxes and spindles), yaw systems, variable pitch systems, blades, and 
electronic components, by systematically classifying and screening the collected literature, 
resulting in the comprehensive overview presented in Table 2. 

An analysis of Table 2 reveals significant research on faults related to generators, 
gearboxes, and blades within wind turbine systems. Further examination of these three 
critical components indicates a prevalent focus on utilizing SCADA attributes to detect 
and analyze abnormal temperature conditions in generators and gearboxes. This trend is 
evidenced by numerous studies (Jia et al., 2021; Liu et al., 2020; Qu et al., 2021; Velandia-
Cardenas et al., 2021; Wang et al., 2022; Wang, Zhao et al., 2021; Xu et al., 2019). The 
following conclusions can be drawn from the literature in Table 2.

(a) Faults in wind turbine components such as generators and gearboxes have 
significant impacts, incurring high costs in terms of time, spare parts, and repairs 
for replacement and maintenance. Focusing on abnormal temperature faults in 
gearboxes and generators can effectively contribute to reducing operational 
expenses. This approach enables early detection of potential issues, allowing for 
timely interventions and preventive maintenance, thereby minimizing the risk 
of catastrophic faults and optimizing the overall maintenance strategy.

(b) Gearboxes and generators, as typical rotating equipment in wind turbines, 
predominantly exhibit gradual faults. The characteristic of these faults is a slow 
temperature drift in the rotating components, eventually leading to malfunctions. 
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Table 2 
Components fault of wind turbine

Components Fault type Reference
Generator Fault of bearing inner raceway, outer raceway, and 

rolling element for generator bearing
Tang et al., 2022; (Yang, Liu et al., 
2022

Generator bearing temperature 
Generator front bearing temperature overrun fault
Generator rear bearing temperature overrun fault
Generator damages the front and rear bearings et al.

Wang et al., 2022

Jia et al., 2021

Wang, Zhao et al., 2021
Rotor winding aging Zhang & Lang, 2020

Gearbox Gearbox pump damaged
Gearbox bearings damaged
Gearbox noise

Latiffianti et al., 2022

Abnormal gearbox temperature rise Liu et al., 2020; Velandia-Cardenas 
et al., 2021; Qu et al., 2021; Xu et 
al., 2019

Gearbox pitting, broken tooth Du et al., 2022
Gearbox oil pressure difference anomaly Bo et al., 2019
Gearbox lubricant pressure anomaly Wang et al., 2017; Yang & Zhang, 

2021b
The low temperature of the gearbox oil
Gearbox frequency converter no feedback
Gearbox oil flow no feedback
Gearbox bearing 1 PT100 error

Chacon et al., 2020

Gearbox high-speed stage bearing fault. McKinnon et al., 2020
Main bearing Bearing over temperature warning Herp et al., 2020; Wang, Zhao et 

al., 2021; Xiao et al., 2022
Pitch system Encoder Failure

Slip Ring Failure
Electric Motor Failure

Wei et al., 2020

Hydraulic hoses and oil replacement 
Hub oil leakage 
Block replacement at blade B 
Block leakage in blade B
Replacement of blade valve
Nitrogen accumulator (No 4) replacement of Blade
Blade tracking error during stop/operation of Blade
Replacement of hyd. Cylinder

Korkos et al., 2022

High air content in oil
Pump wear 
Hydraulic leakage

Tutiven et al., 2018

The pitch gear fault of blade 1 Tao et al., 2019
Blade Blade icing fault Tong et al., 2022; Yi et al., 2021; 

Velasquez et al., 2021; Aziz et al., 
2022; Aziz et al., 2021
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Table 2 (continue)

Components Fault type Reference
Blade breakages or blade rupture Zhao et al., 2021; Yang & Zhang, 

2021a
Wang, Zhang et al., 2018

Blade contamination Velasquez et al., 2021
Yaw system Yaw misalignment Pandit & Infield, 2018; Aziz et al., 

2021)
Electronic 
component

Short-circuits of generator Sousa et al., 2018
Wang, Ma et al., 2018

Sensor Sensor faults Kavaz & Barutcu, 2018

This gradual temperature change presents potential features that can be modeled to 
predict faults in advance (Wang et al., 2017; Yang & Zhang, 2021b). Consequently, 
early fault detection studies focusing on abnormal temperature attributes are 
common in this field.

(c) Ice faults are the most extensively studied issues affecting wind turbine blades 
(Aziz et al., 2021, 2022; Tong et al., 2022; Velasquez et al., 2021; Yi et al., 2021). 
The primary reason for this focus is that ice accumulation directly reduces the 
active power output of wind turbines under identical wind speed conditions. This 
phenomenon significantly affects the power generation capacity of wind farms, 
resulting in decreased overall efficiency and productivity.

(d) The primary focus is on gradual deterioration in the literature concerning the main 
bearing faults. Researchers typically utilize the main bearing temperature signal 
as the main data source for analysis to assess the potential presence of faults. This 
approach enables the detection of subtle changes in bearing performance over time, 
facilitating the early identification of developing issues (Herp et al., 2020; Wang, 
Zhao et al., 2021; Xiao et al., 2022). 

(e) Pitch system faults are relatively complex, encompassing multiple components 
and signal attributes. These faults are generally associated with hydraulic devices 
and motors within the pitch control mechanism.

(f) Yaw system fault studies primarily focus on yaw misalignment issues. The main 
objectives of these investigations are to optimize wind energy capture and reduce 
the stress impact on wind turbines.

Analysis of Modeling Types for Fault Detection 

A comprehensive review of the literature on early fault detection in wind turbines has been 
conducted, utilizing the methodologies employed in research as a basis for classification. 
The literature search focused on four primary categories: machine learning models, deep 
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learning models, statistical probability models, and other models. Table 3 presents a 
systematic compilation of the fault detection modeling methods utilized in the reviewed 
literature, offering a structured overview of the current state of research in this field. 

The following conclusions can be drawn based on the analysis presented in Table 3.
(a) From the perspective of literature statistics, machine learning approaches are more 

prevalent than other types. The predominantly applied models include Support 

Table 3 
Analysis of modelling types for fault detection

Modeling type Algorithm Reference
Machine 
learning

SVM Velandia-Cardenas et al., 
2021; Qu et al., 2021; 
Mammadov et al., 2021

Support vector regression Díaz et al., 2020; Tao et 
al., 2019

One-Class Support Vector Machine (OCSVM), Isolation 
Forest (IF), Elliptical Envelope (EE).

McKinnon et al., 2020

XGboost, AdaBoost Liu et al., 2020; 
Mammadov et al., 2021; 
Velandia-Cardenas et al., 
2021; Zhang et al., 2018; 
Trizoglou et al., 2021

Random forest regressive Turnbull et al., 2022; 
Zenisek et al., 2019; 
Zhang et al., 2018

Sparse isolation encoding forest Du et al., 2022
Sparse Bayesian Learning (SBL) algorithm Bo et al., 2019
Optimized relevance vector machine (RVM) regression Wei et al., 2020
Adaptive neuro-fuzzy inference system (ANFIS) technique Korkos et al., 2022
Gaussian Process (GP) models Pandit & Infield, 2018; 

Pandit & Infield, 2019
Semisupervised extreme learning machine (SS-ELM) 
algorithm

Tong et al., 2022

Minority clustering Synthetic minority oversampling 
technique

Yi et al., 2021

Higher Order Statistics-Bayes classifiers Sousa et al., 2018
Quantile regression neural networks Xu et al., 2019
Improved principal component analysis Zhang et al., 2021; 

Wang, Ma et al., 2018; 
Pozo et al., 2018

Deep learning Dual-stage attention-based recurrent neural network Yang, Liu et al., 2022
Cascade SAE & LightGBM Wang et al., 2022
Secondary decomposition, reinforcement learning and SRU 
network

Liu et al., 2021
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Vector Machines (SVM) (Mammadov et al., 2021; Qu et al., 2021; Velandia-
Cardenas et al., 2021), Boost algorithm (Liu et al., 2020; Mammadov et al., 
2021; Trizoglou et al., 2021; Velandia-Cardenas et al., 2021; Zhang et al., 2018) 
and decision tree (Turnbull et al., 2022; Zenisek et al., 2019; Zhang et al., 2018). 
These studies investigate early fault detection using machine learning from various 
application aspects. However, there has been a notable decrease in publications 
utilizing these methods over the past two years.

(b) Research on wind turbine fault detection utilizing deep learning algorithms has 
gained momentum, which aligns with the broader surge in deep learning research. 
The proportion of literature focusing on early fault detection in wind turbines 
based on deep learning approaches is steadily increasing. Various deep learning 
architectures have been employed, including Deep Neural Networks (DNN), 
Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), Recurrent 
Neural Networks (RNN), Stacked Autoencoders (SAE), Convolutional Neural 
Networks (CNN), and Variational Autoencoders (VAE), among others (Yang, Liu 
et al., 2022; Wang et al., 2022; Xiao et al., 2022; Liu et al., 2021; Yang & Zhang, 
2021b; Wang et al., 2017; Yang & Zhang, 2021b). Their multilayered and complex 
designs characterize the structure and mechanism of deep learning algorithms. 
Furthermore, there is a growing demand for computing resources due to increasing 
computational requirements.

Table 3 (continue)

Modeling type Algorithm Reference
Stacked long-short-term memory with multi-layer perceptron 
(SLSTM-MLP)

Xiao et al., 2022

RUL Recurrent Neural Network Herp et al., 2020
Conditional convolutional autoencoder Yang & Zhang, 2021a
LSTM-SAE, CNN-SAE Fotiadou et al., 2020
DAE, CNN, residual attention module (RAM) Jia et al., 2021
Deep Neural Networks Wang et al., 2017
Deep Autoencoder Wang, Zhang et al., 2018
Joint variational autoencoder (JVAE) Yang & Zhang, 2021b
Multi-Channel CNN Mohammadi et al., 2020

Probabilistic 
statistical 
model

Optimized relevance vector machine Wei et al., 2020
Sparse heteroscedastic Gaussian Process regression Rogers et al., 2020
Discrete digital model Tang et al., 2022
Base pattern Probability Mass Function (PMF) Peña et al., 2021

Other methods Failure Modes, Effects, and Criticality Analysis Catelani et al., 2020
Ensemble Fuzzy Classifier Pratama et al., 2018
Symbolic Regression (SR) Zenisek et al., 2019
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(c) The method based on statistical probability continues to play a significant role 
in early fault detection in wind turbines, primarily due to the stochastic nature of 
wind energy resources (Peña et al., 2021; Rogers et al., 2020; Tang et al., 2022; 
Wei et al., 2020 ). These approaches leverage statistical tools such as confidence 
intervals (Wei et al., 2020) and probability density functions (Peña et al., 2021) to 
assess the operational status of wind turbines and determine whether they are in 
an abnormal state. 

Analysis of Data Source 

Through analysis of selected literature, wind turbine fault data sources can be categorized 
into four distinct types: open datasets, real SCADA data, simulation data, and experimental 
platform data. Open datasets are primarily accessible and downloadable from online 
sources. Real SCADA data consists of actual operational data obtained through project 
collaborations or direct involvement in wind turbine maintenance activities. Simulation 
data is generated using software-based simulations on hardware platforms, allowing 
for the introduction of manual fault simulations and the collection of diverse fault data. 
Experimental platform data is derived from custom-built hardware simulation platforms, 
where researchers simulate wind turbine faults and collect fault signals using tailored data 
acquisition systems to create fault data samples. Table 4 presents a comprehensive analysis 
of these data source categories.

Through the screening and classification of data sources in Table 4, the following 
conclusions can be drawn:

Table 4 
Data source information

Dataset 
type

Numbers of 
unit Description Location Reference

Open 
datasets

5 WTs EDP open data, 2-year time span, 
10-min time resolution,

-- Latiffianti et al., 
2022

5 WTs EDP open data, 2-year time span, 
10-min time resolution

-- Jia et al., 2021

2 WTs From the China Industrial Big 
Data Competition

Beijing, China Tong et al., 2022

3 WTs European project OPTIMUS, 
40 variables every 10 min with 
101,752 samples

-- Chacon et al., 2020

Real 
SCADA 
data

30 WTs, 22 
healthy WTs 

A sampling interval of 5min mid-eastern 
China.

Yang, Liu et al., 
2022

4 WTs 10-min granularity and 101 
features

Prince Edward 
Island (PEI), 
Canada

Mammadov et al., 
2021
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Dataset 
type

Numbers of 
unit Description Location Reference

2 WTs The 30s per data instance Inner Mongolia, 
China

Liu et al., 2020

3 WTs Case 1: data per 1s
Case 2: data per 1s
Case 3: a section of data every 
10min

-- Wang et al., 2022

3 WTs Every 10 min, 40 attributes Spain Zhang & Lang, 2020
3 WTs 2 MW WTs -- Liu et al., 2021
-- Sampling interval 1 min -- Bo et al., 2019
21 WTs 10-min averaged SCADA data, 2 

separate months of data
Europe McKinnon et al., 

2020
132 WTs Sampled each 10 min as averages 

of the past 10 min interval
-- Herp et al., 2020

24 WTs 10-min interval-sampling SCADA 
data

Southern China Wei et al., 2020

5 WTs 2.3MW WTs, 10 years data, 10-
min sampling interval

North-western 
Finland

Korkos et al., 2022

1 WT 2.3 MW Siemens turbine, SCADA 
data with 10-min sampling 
interval

-- Pandit & Infield, 
2018; Pandit & 
Infield, 2019

117 WTs The Ningxia dataset was sampled 
in 30-s intervals, and the dataset 
of Shandong and Anhui was 
sampled in 10 min intervals

Ningxia; 
Shandong; Anhui, 
China

Yang & Zhang, 
2021a

13 WTs 10 min sampling intervals, 2019 
– 2020

North of Perú Velasquez et al., 
2021

1 WTs Onshore 2MW Aragon, Spain Catelani et al., 2020
5 WTs 2.3 MW Enercon E-70 WTs, 10 

min sampling intervals
El Hierro-Canary 
Islands- Spain

Díaz et al., 2020

-- 3 MW direct-drive turbine, 10 min 
intervals

South coast of 
Ireland

Fotiadou et al., 2020

1 WT a 2 MW direct-driven WT with 
cut-in, rated, and cut-out wind 
speeds of 3, 11, and 25 m/s, 
SCADA data sampling interval 
10min

Lu Hejin 
wind farm in 
Chenzhou, 
southern China

Xiao et al., 2022

-- 10-min interval SCADA data, 4 
wind farms

Hebei; Liaoning; 
Shanxi, China

Yang & Zhang, 
2021b

-- 10-min interval, 
3 SCADA datasets

Mainland China Yang, Wang et al., 
2022

92 WTs 10-min interval SCADA data, 6 
wind farms

Hebei; Liaoning; 
Shanxi; Shanxi;
Shandong, China

Wang et al., 2017

Table 4 (continue)
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Dataset 
type

Numbers of 
unit Description Location Reference

60 WTs 4wind farms, with 10-min 
SCADA data.

Shandong, Anhui,
Ningxia, Tianjin, 
China

Wang, Zhang et al., 
2018

3 WTs 1.5MW, sampling rate of 1Hz East China Quanlin et al., 2020
Simulation 
data

-- 1 kHz current signal, sampling 
time 5.5 s

-- Tang et al., 2022

1 WT FAST models, a barge-offshore 
version

NREL Tutiven et al., 2018; 
Pozo et al., 2018

-- Damaged gear, Cracked gear MATLAB 
platform

Agasthian et al., 
2019

Experiment 
platform 
data

wind 
turbine 
platform  

Sampling frequency rate of 100 
kHz and a sampling duration of 
20 s.

-- Du et al., 2022

-- Data was sampled at 5 kHz, with a 
14-bit resolution

-- Sousa et al., 2018

Table 4 (continue)

(a) The analysis of data sources reveals that faults in critical wind turbine components, 
particularly generators and gearboxes, substantially impact operational efficiency 
and costs. When replacement or maintenance is required, these components are 
associated with high time, spare parts, and repair costs.

(b) The analysis of data sources reveals a relatively small number of studies based on 
open datasets (Chacon et al., 2020; Jia et al., 2021; Latiffianti et al., 2022; Tong 
et al., 2022), with the primary open databases including EDP (Jia et al., 2021; 
Latiffianti et al., 2022) and OPTIMUS1 (Chacon et al., 2020). Notably, there is a 
significant lack of comparative analysis between different research methods across 
these studies, which limits the ability to assess the relative effectiveness of various 
fault detection approaches when applied to common datasets.

(c) The literature review reveals that studies based on real SCADA data constitute 
the largest proportion of research, with contributions from diverse geographical 
regions, including Asia (Yang, Liu et al., 2022), Europe (McKinnon et al., 2020), 
South America (Velasquez et al., 2021), and North America (Mammadov et al., 
2021). However, the significant data variability between studies and the inherent 
privacy constraints of SCADA datasets limit the generalizability of research 
findings, confining their applicability primarily to case-specific contexts. Notably, 
within the geographical distribution of SCADA data sources, China emerges as 
the predominant contributor, as evidenced by multiple studies (Liu et al., 2020; 
Quanlin et al., 2020; Wei et al., 2020; Xiao et al., 2022; Yang, Liu et al., 2022; 
Yang & Zhang, 2021a).
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(d) Simulation data predominantly relies on NREL’s FAST software (Pozo et al., 
2018; Tutiven et al., 2018), with various fault types generated through parameter 
adjustments in the model. MATLAB/Simulink software is also employed for 
simulation purposes (Agasthian et al., 2019). However, the effectiveness of this 
method is directly related to the accuracy of the model and the similarity of wind 
farms.

(e) Experimental platforms utilizing self-designed research setups have collected fault 
data with remarkably high sampling frequencies, typically exceeding 1000 Hz (Du 
et al., 2022; Sousa et al., 2018). This high-frequency data acquisition necessitates 
subsequent sampling or preprocessing of the original data.

Research Question Analysis

This review has significantly enhanced the understanding of early fault detection in wind 
turbines through a comprehensive analysis of the literature from the perspectives of fault 
types, modeling methods, and data sources. However, a more focused examination of the 
literature is necessary to directly address the three research questions posed in this paper. 
This discussion aims to provide explicit answers to these questions through a targeted 
analysis of the relevant studies, synthesizing the insights gained from the diverse approaches 
and methodologies employed in wind turbine fault detection research.

RQ1: What is the Current Trend in Advanced Fault Detection Methods for Wind 
Turbines?

With the prosperous development of new energy power generation worldwide, scholars 
researching early fault detection in wind turbines have rapidly increased. Researchers have 
explored diverse approaches, including strategy design optimization and enhanced sensor 
deployment, to pre-emptively identify potential faults. The scope of wind turbine early fault 
detection research is remarkably broad, encompassing areas such as wind speed-active power 
curve fitting, temperature signal modeling of rotating components, and the development 
and threshold optimization of early fault detection indicators. While each of these research 
domains merits a dedicated review, this paper focuses specifically on wind turbine fault 
research directions. The subsequent analysis synthesizes the research trends in early fault 
detection of wind turbines, concentrating on modeling algorithms and fault typologies.

Modeling Algorithm. Based on the analysis of previous modeling methods, it is evident 
that deep learning and machine learning remain the predominant research approaches for 
early fault detection in wind turbines. Specifically, the rapid advancements in deep learning 
have enabled the accurate characterization of nonlinear data, proving highly effective 
in early fault detection. However, the poor explainability of deep learning inevitably 
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poses challenges in the field of early fault detection for wind turbines. Machine learning 
approaches maintain a predominant position in this domain, primarily leveraging SVM 
and related algorithms, regression-based methods, and Boost-related techniques. These 
approaches offer clear principles and straightforward implementations, contributing to 
their widespread adoption in wind turbine fault detection research. 

Fault type. Wind turbine fault type studies can be broadly categorized into two primary 
domains: temperature-related and electrical-related faults, which dominate the landscape 
of wind turbine fault detection research. More attributes are included in fault detection 
research with the development of SCADA systems. Notably, temperature-related faults 
typically manifest as gradual processes rather than sudden occurrences, aligning their study 
with the research paradigm of concept drift algorithms.  

Furthermore, analysis of data sources for wind turbine fault detection reveals a trend 
towards increasing sampling frequencies in SCADA systems, potentially enhancing fault 
detection accuracy. The literature demonstrates a wide range of sampling frequencies, 
spanning from 10 minutes to 1 second, indicating that the operation and maintenance of 
current wind power are developing rapidly, and there is an urgent need for a high-precision 
early detection model.

RQ2: What is the Current Research Status of Concept Drift Methods in Wind Turbine 
Fault Detection?

The concept drift methods have laid a solid foundation for early fault detection in wind 
turbines, although the approaches to research vary significantly among studies. The 
literature on concept drift has been reviewed, and the findings are summarized in Table 5.

The following conclusions can be drawn from the aforementioned literature review.
(a) Several studies characterize wind turbines’ normal operating state and employ 

algorithms to identify “new” data or “novel” types. These approaches detect 
states that differ from the normal operating conditions in wind turbines but do not 
explicitly address the issue of concept drift ( Bilendo et al., 2021; Du et al., 2022).

(b) Some detection methods integrate machine learning techniques with concept drift 
algorithms to create comprehensive strategies for identifying potential faults. For 
instance, some researchers utilize KNN and SVM in their research approach (Hu 
et al., 2021). Others employ Dynamic AdaBoost as their modeling method (Lin 
et al., 2019).

(c) The concept drift method has not yet become a primary research focus in early 
fault detection for wind turbines. Moreover, the screened literature does not 
prominently feature typical concept drift algorithms such as EDDM (Early Drift 
Detection Method) and ADWIN (ADaptive WINdowing).
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Table 5 
Literature related to concept drift

Problem Aim/Objective Main Research 
methods Result References

Detection of the data 
shift with unlabeled 
data

Fault diagnosis in an 
evolving environment 

K-nearest neighbor 
(KNN) classifier
SVM classifier

Classification 
accuracy, 
parsimony and 
easiness

Hu et al., 
2021

Monitoring ball-
bearings without 
previous ball-bearing 
RTF data

Online fault detection 
and prognosis

Hidden Markov 
models
polynomial regression 
model

Online predictive 
health assessment

Puerto-
Santana et 
al., 2022

Gearbox fault 
diagnosis

Fault Severity 
Diagnosis

Distance metric and 
the concept detection

KL divergence 
has been the 
appropriate metric

Peña et al., 
2021

Modeling 
deteriorated 
because of the non-
stationarities of 
industrial data

Labeling the potential 
concept to detect a 
fault

Statistical detectors 
and window-based 
approaches

Different types of 
drifts – sudden, 
gradual, recurrent 
– can be classified

Martinez et 
al., 2018

Hard fault detection 
with Big Imbalance 
Industrial IoT Data

An Ensemble 
Learning Method of 
Offline Classifiers

Dynamic AdaBoost High accuracy 
rate, over 94%

Lin et al., 
2019

Traditional 
incremental learning 
model high update 
frequency

Controlling the 
incremental update by 
detecting the concept 
drift

Shared nearest 
neighbors (AILSNN)

Higher accuracy 
than 1DCNN with 
less training time

Wang, Sun et 
al., 2021

Wind turbine 
degradation 
evaluation

Using information 
granules to indicate 
the health state

Concepts extraction 
using fuzzy c-means 
clustering

Deterioration 
was most visible 
for higher wind 
speeds

Jastrzebska 
et al., 2022

Anomaly detection 
and novel fault 
discrimination for 
WTs

Unsupervised method 
from anomaly 
detection to novel 
fault discrimination.

Sparse isolation 
encoding forest

High diagnostic 
accuracy

Du et al., 
2022

Fault detection by 
the "drive-train" 
signal

Effectively detect 
faults without any 
prior knowledge

K-means + LDA + 
ANN

High accuracy 
by processing the 
fault-candidates 
concept 

Bilendo et 
al., 2021

Industrial radial 
fans predictive 
maintenance

Identify wear and tear Linear Regression 
(LR), Random Forest 
Regression (RF), 
Symbolic Regression 
(SR)

Sufficiently large 
forecast horizon, 
predict the drift 
early

Zenisek et 
al., 2019

Concept 
classification 
for data streams 
under complex 
environments

Built upon an 
evolving classifier

pENsemble High accuracy 
and complexity

Pratama et 
al., 2018
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RQ3: What are the Advantages of Distance Metrics for Wind Turbine Fault Detection 
and Concept Drift?

Distance metrics play a significant role in both early fault detection and concept drift 
research. In studies of early fault detection based on concept drift algorithms, various types 
of data, including values, datasets, and indicators, are frequently compared and analyzed. 
The choice of distance metric is fundamental to the effectiveness of this research. An 
analysis of literature related to distance metrics has been conducted, and the results are 
presented in Table 6.

Different distance metric methods exhibit distinct advantages in wind turbine 
fault detection. KL divergence performs well in comparing data distributions, and it 
is particularly suitable for diagnosing the severity of faults. Hellinger distance plays a 
crucial role in concept drift detection. Mahalanobis distance shows advantages in anomaly 
detection in high-dimensional spaces. The diversity of these distance measurement methods 
allows researchers to select the most suitable method based on specific problems, thereby 
enhancing the accuracy and efficiency of fault detection.

After summarizing the literature from Table 6, the following conclusions can be drawn:
(a) Distance metrics are employed in diverse ways across the reviewed literature. 

For example, some researchers measure different data distributions through 
KL divergence (Peña et al., 2021). Other researchers obtain better accuracy by 
measuring the distance between different patterns (Hu et al., 2021). 

(b) The role of distance metrics in early fault detection based on concept drift strategies 
varies. For instance, Mahalanobis distance can be applied to the original data in 
the preprocessing stage (Renstrom et al., 2020). Additionally, distance metrics can 
serve as performance indicators in the residual processing stage after modeling 
(Jastrzebska et al., 2022). 

Distance metric plays a crucial role in wind turbine fault detection. They provide the 
foundation for data analysis and directly influence the accuracy and efficiency of fault 
detection. By choosing appropriate distance metric methods, researchers can identify 
changes in data patterns more accurately, thereby detecting potential faults promptly.

State-of-the-Art Performance in Wind Turbine Fault Detection

Reviewing and summarizing the current state-of-the-art research performance is essential 
before exploring emerging trends and future directions in wind turbine fault detection. This 
approach provides readers with an overview of the latest achievements in the field and 
establishes a foundation for subsequent discussions. This discussion will be on comparative 
analysis of recent, highly representative studies encompassing various fault detection 
methods and their effectiveness across different fault scenarios.
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Table 7 summarizes the key performance indicators of the representative studies.
Through performance analysis of these state-of-the-art methods, it can draw the 

following observations:
(a) Various advanced modeling techniques show excellent performance across different 

fault types. For instance, the dual-stage attention-based recurrent neural network 
(Yang, Liu et al., 2022) achieves the highest accuracy for generator bearing 
faults, while the Joint Variational Autoencoder (JVAE) (Yang & Zhang, 2021b) 
demonstrates high F1-Score and low false positive rate for gearbox lubricant 
pressure anomalies.

(b) Different performance criteria are used across studies, making direct comparisons 
challenging. Common metrics include accuracy, F1-score, detection rate, and 
specific measures such as ICS and CRR for certain fault types.

(c) Some methods show promising results for specific fault types. For example, the 
LoMST and CUSUM approach (Latiffianti et al., 2022) achieves a 100% detection 
rate for gearbox bearing damage, while the SS-ELM algorithm (Tong et al., 2022) 
performs well on imbalanced datasets for blade icing fault detection.

(d) Despite these advancements, challenges remain in practical applications. These may 
include the need for large amounts labeled data and real-time processing capabilities.

Table 7
State-of-the-art performance in wind turbine fault detection methods

Fault type Modeling type Performance criteria reference
Generator bearing 
Fault

Discrete digital model Best ICS, CRR achieved Tang et al., 2022
Dual-stage attention-based 
recurrent neural network

Highest accuracy (Acc), 
recall (Rec), and Fβ-score 
among the compared 
algorithms

Yang, Liu et al., 
2022

Gearbox lubricant 
pressure anomaly

Joint variational autoencoder 
(JVAE)

F1-Score: 0.914
PR > 97%, 
FPR < 1%

Yang & Zhang, 
2021b

Gearbox bearings 
damaged

Combination of the use 
of LoMST and a CUSUM 
approach

100% detection rate Latiffianti et al., 
2022

Pitch system fault Adaptive neuro-fuzzy 
inference system (ANFIS) 
technique

F1-score
86% F1-score of Pitch faults 
detection task

Korkos et al., 2022

Blade icing fault Semi-supervised extreme 
learning machine (SS-ELM) 
algorithm

MCC, G-mean, F1_score.
Bset imbalance dataset test 
performance

Tong et al., 2022

Multitask fault 
detection

Continual Learning, digital 
twin

F1_score, RMSE
Best continual task 
performance

Yang, Wang et al., 
2022
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Emerging Trends and Future Directions

As wind turbine technology continues to advance and data science rapidly evolves, the 
field of wind turbine fault detection is undergoing a significant transformation. In recent 
years, several emerging technologies and methods have shown great potential to further 
improve the accuracy and efficiency of fault detection.

Firstly, the application of digital twin(Feng, Ji, Zhang, et al., 2023) technology in wind 
turbine fault detection is on the rise. As demonstrated by the continuous learning framework 
proposed by Wang (Yang, Wang et al., 2022), digital twins can provide a unified platform 
for multiple modeling tasks, including gearbox fault detection, blade fracture detection, 
and wind power prediction. This approach enhances model generality and improves its 
adaptability under various operating conditions.

Secondly, the integration of physics-informed and data-driven methods is becoming 
an important trend (Feng, Ji, Zhang, et al., 2023). While currently primarily applied to 
vibration data analysis, the concept of this approach can be extended to SCADA data 
analysis. For instance, incorporating knowledge from physical models into deep learning 
networks could potentially improve model interpretability and generalization capabilities.

Furthermore, multi-scale feature fusion and novel deep-learning neural network 
structures (such as gated recurrent units) have shown promising results in bearing health 
management ( Mohammadi et al., 2020; Ni et al., 2024; Xiao et al., 2022). These techniques 
have the potential to be applied to wind turbine SCADA data analysis to enhance fault 
detection accuracy and predictive capabilities.

Lastly, with the development of 5G technology and edge computing, the prospects 
for real-time big data processing and analysis in wind turbine fault detection are broad. It 
could lead to faster and more precise fault detection systems, reducing maintenance costs 
and improving wind turbine reliability.

These emerging trends indicate future directions in wind turbine fault detection. 
Researchers should closely monitor these areas to drive further advancements in the field.

CONCLUSION

This paper provides a comprehensive overview of the current state of wind turbine fault 
detection research. Fault detection is an important field of study in the wind turbine industry, 
as it has the potential to reduce operational and maintenance costs. 

This paper uses the PRISMA method to select 65 relevant wind turbine fault detection 
literature. The paper presents essential information by analyzing the literature, including 
literature type, publication year, and author nationality. Furthermore, by thoroughly 
analyzing and synthesizing these 65 literature items, the study investigated fault detection 
components, modeling methods, and data sources. From this comprehensive review, the 
following conclusions are drawn: 
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(a) In the component analysis of wind turbine early fault detection, it can be concluded 
that most research focuses on the abnormal temperature attributes of generators 
and gearboxes. Research on blade faults is also common, while studies on other 
component faults are less prevalent.

(b) In current wind turbine fault detection research, modeling methods primarily rely on 
machine learning and deep learning techniques. Most studies focus on combining 
algorithms and parameter optimization. However, research on improving the 
algorithms themselves is relatively scarce.

(c) Most of the research literature relies on real SCADA data for analysis, with a 
significant proportion originating from China. In contrast, studies utilizing open 
datasets and other sources are comparatively scarce.

After thoroughly reviewing and organizing the literature, this paper addresses research 
questions regarding research trends, concept drift, and distance metrics in wind turbine 
fault detection.

(a) Wind turbine fault detection primarily relies on machine learning and deep learning 
techniques, with temperature and electrical faults being the predominant focus. As 
SCADA systems have evolved, a broader range of attributes has been incorporated 
into early fault detection research.

(b) Concept drift algorithms represent a minor portion of wind turbine early fault 
detection research. They typically achieve fault detection objectives through 
integration with other methods. These algorithms show considerable potential and 
suitability for studying early fault detection in wind turbines.

(c) The distance metric plays a fundamental role in modeling and is one of the key 
elements for early fault detection. Improving the distance metric can enhance the 
effectiveness of early fault detection.

Research Gaps and Future Work

As the wind turbine fault detection field rapidly evolves, it is crucial to identify existing 
research gaps and outline future directions. This discussion synthesizes the key challenges 
that emerged from comprehensive literature review and proposes potential avenues for 
future research.

This study employs the PRISMA method to systematically review existing literature, 
revealing several key research gaps and future challenges in wind turbine fault detection.

(a) Data Quality and Availability
 The paucity of openly accessible, high-quality, large-scale SCADA datasets 

significantly impedes cross-method comparisons.
Current research predominantly utilizes data from specific wind farms, resulting 
in limited generalizability across diverse geographical regions and turbine types.
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(b) Algorithm Adaptability and Robustness
Existing methodologies demonstrate insufficient adaptability to diverse operational 
conditions and environmental fluctuations.
The current state-of-the-art exhibits limited efficacy in detecting and identifying 
rare or novel fault types.

(c) Multi-source Data Fusion
Comprehensive approaches are lacking for effectively integrating SCADA data, 
vibration data, meteorological data, and other multi-source information.
Inadequate research on how to collaboratively analyze data with different sampling 
frequencies and characteristics.

(d) Real-time Capability and Computational Efficiency
Numerous advanced deep learning algorithms exhibit substantial computational 
complexity, thereby challenging their feasibility and efficacy for real-time 
monitoring applications in wind turbine fault detection systems.
Lack of research on lightweight fault detection algorithms suitable for edge 
computing environments.

(e) Interpretability
The inherent opacity of deep learning methodologies, often referred to as the “black 
box” phenomenon, significantly impedes their credibility and interpretability in 
practical fault detection applications.
There is a notable deficiency in research on effectively synthesizing domain 
knowledge from physical models with data-driven approaches.

Further analysis shows that it cannot cover the current status of wind turbines’ overall 
fault detection research. The aspects that need to be improved are as follows.

(a) There are few horizontal comparisons of relevant literature on temperature 
parameter modeling, and relevant horizontal comparison research plans to carry 
out. The research focuses on data preprocessing methods, selecting suitable 
SCADA attributes for different faults, and threshold determination methods.

(b) Early fault detection for wind turbines based on SCADA data often focuses on 
temperature and electrical signals, while pressure and torque signals have received 
less study and analysis.

(c) The literature on wind turbine early fault detection based on non-parametric 
methods needs to be further studied.

(d) Current literature on the fusion of SCADA data and other data for fault detection 
should be studied

(e) Further literature review and summarization of its developmental characteristics 
are necessary to incrementally update the model for early fault detection in wind 
turbines.

(f) The classification method and modeling method need to be further improved.
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